VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 B.E. (EEE: CBCS) III-Semester Supplementary Examinations, June-2019
 Electromagnetic Field Theory

Time: $\mathbf{3}$ hours
Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2=20$ Marks $)$

1. State Coloumb's Law.
2. Find the total charge inside the volume $\rho_{v}=\rho_{0} / \mathrm{r} \mathrm{C} / \mathrm{m}^{3}$ enclosed in a sphere of radius $\mathrm{r}=3$ units.
3. A vector field $\mathbf{E}=$ yay $+\mathrm{xa}_{x}$. Verify whether E represents an electrostatic field or not.
4. Write the two Maxwell's equations for electrostatic fields.
5. If the vector $\mathbf{B}=\mathrm{x}^{2} \mathbf{a}_{\mathbf{x}}-x y \mathbf{a}_{y}-\mathrm{Kxza} \mathbf{a}_{\mathbf{z}}$ represents a magnetic field. Find the value of the constant K .
6. Magnetic field intensity $\mathbf{H}=3 \mathrm{a}_{x}+7 \mathrm{ya}_{y}+2 \mathrm{x} \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}$. Evaluate conduction current.
7. State Poynting Theorem and write its mathematical form.
8. Find the Conduction and Displacement current densities in a material having conductivity of $10^{-3} \mathrm{~S} / \mathrm{m}$ and $\varepsilon_{r}=2.5$ if the electric field in the material is $\mathbf{E}=5 \times 10^{-6} \mathrm{sin} 9 \times 10^{9} \mathrm{t} \mathrm{V} / \mathrm{m}$.
9. Explain the significance of insertion loss.
10. Define the term electromagnetic compatibility.

Part-B $(5 \times 8=40 \mathrm{Marks})$
11. a) A charge $\mathrm{Q}_{2}=10 \mu \mathrm{C}$ located at appoint $\mathrm{P}_{2}(0,1,2)$ and another charge $\mathrm{Q}_{1}=50 \mu \mathrm{C}$ located at a point $\mathrm{P}_{1}(1,0,2)$ in free space. Find the Force on Q_{2}.
b) Derive Maxwell's second equation for electrostatic fields.
12. a) Find the potential and volume charge density at $(1,2,3)$ in free space for given potential field $V=4 y z / x^{2}+1$.
b) Obtain the conductor-dielectric boundary conditions for an interface in static electric field.
13. a) Deduce an expression for inductance of a coaxial cable using Ampere's law.
b) The point charge $\mathrm{Q}=18 \mathrm{nC}$ has a velocity of $5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the direction $\mathbf{a}_{v}=0.04 \mathrm{a}_{x}-0.05 \mathrm{a}_{y}+0.2 \mathbf{a}_{z}$. Calculate the magnitude of force exerted on the charge be the field (i) $\mathbf{B}=-3 \mathbf{a}_{x}+4 \mathbf{a}_{y}+6 \mathbf{a}_{z} \mathrm{mT}$ (ii) $\mathbf{E}=-3 \mathbf{a}_{x}+4 \mathbf{a}_{y}+6 \mathbf{a}_{z} \mathrm{kV} / \mathrm{m}$ (iii) \mathbf{B} and \mathbf{E} acting together.
14. a) A conduction bar can slide freely over two conducting rails as shown in figure. Calculate the induced voltage in the bar if the bar slides at a velocity of $\mathbf{u}=5 \mathbf{a}_{y} \mathrm{~m} / \mathrm{s}$ and $\mathbf{B}=20 \mathbf{a}_{z} \mathrm{mT}$.

b) Derive the expression for three dimensional wave equation.
15. a) Discuss in detail grounding method to control EMI.
b) Explain the importance of achieving Electromagnetic compatibility.
16. a) Prove that potential between points A and B is independent of the path taken between the points A and B.
b) Prove that electric field intensity on either side of the parallel plates is zero.
17. Answer any two of the following:
a) Force between two current carrying conductors carrying current in the same direction.
b) A plane electromagnetic wave travelling in the positive z direction in an unbounded lossless dielectric
medium with $\mu_{\mathrm{r}}=1$ and $\varepsilon_{\mathrm{r}}=3$ has peak electric intensity E of $16 \mathrm{~V} / \mathrm{m}$. Find i) velocity ii) η iii) \mathbf{H} iv) Poynting Vector.
c) List the Sources of Electro Magnetic Interference.

